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8 Derivation of Network Rate Equations from Single-

Cell Conductance Equations

We consider a network of many neurons, each of which obeys a set of conductance-
based, Hodgkin-Huxley equations for subthreshold and spike activity. Our goal is to
derive an expression for the firing rate of the neuron in terms of the synaptic input
to the cell. The equations are self-consistent in the sense that the output of each
neuron contributes to the synaptic input of every other neuron.

We are motivated to this proof as a means to connect single-cell equations, which
are complicated, to simplified network equations, which are simple in that each cell
is specified solely by its firing rate. Our goal is to understand the weights Wij

that define the synapses between pairs of cells in terms of cellular properties. We
follow the derivations laid down by Sompolinsky and colleagues and by Ermentrout
and colleagues, which holds for averaging. The critical issue is that the network
dynamics and that the rate varies slowly over time, i.e., slow on the time-scale of
the time-constant of the neuron. in asynchronous.

8.1 Kirchhoff’s law for one neuron

C
dV (t)

dt
+ gL [V (t) − EL] = Iactive(V, t) + Iapplied(t) (8.8)

where EL = reversal potential of leak current, Iactive (V, t) = all voltage- and time-
dependent active currents, and Iapplied (t) = all time-dependent applied currents.

Let
r(t) = f{Iapp(t) − Ic} (8.9)

where r = firing rate, f{· · ·} is the nonlinear gain function and Ic is a threshold
current. A typical but not exclusive choice is

f{µ} = fmax
1 + tanh(µ)

2
. (8.10)

We incorporate the leak conductance through

Ic = Ioc + vc gL (8.11)

where the constant vc scales the dependence of firing threshold on the leak conduc-
tance. Thus

r(t) = f{Iapp(t)− Ioc − vc gL}. (8.12)
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This formalism assumes that changes in conductance shifts the threshold level of
the f − I curve, but does not effect the slope of the curve. This is approximately
true, at least based on the experiments of Reyes.

FIGURE - Gain curve of Reyes

8.2 Network equations

We now consider a network of neurons in which the applied currents Iapp(t) have
two contributions, ones from the ”outside” come in through Iext(t) and inputs from
other cells in the network come in through Inet(t).

C
dVi(t)

dt
= gL [EL − Vi(t)] + Iacti (V, t) + Iexti (t) + Ineti (t). (8.13)

8.2.1 Averaging over external inputs

We consider the form of Iexti (t), the external input to the i-th neuron, first, i.e.,

Iexti (t) = gini (t) [Ein − Vi(t)] (8.14)

where Ein in the reversal potential for external synaptic input. The conductance
weights the external input and is described by a first order equation for t ≥ 0, i.e.,

τin
dgini (t)

dt
+ gini (t) = Gin τin

all inputs∑
tin

δ (t− tin) (8.15)

where the maximum conductance Gin and the time-constant τin is taken as the same
for each synaptic input, a simplification that permits the summation to be taken as
over all spikes from all external inputs to the i-th postsynaptic neuron.

The formal solution for the state (steady state of inhomogeneous response) is
given by

gini (t) = Gin

∫ t

−∞
dt′e−(t−t

′)/τin

all inputs∑
tin

δ (t′ − tin). (8.16)

The external input is taken to be an inhomogeneous Poisson process with a mean
rate rini (t) that evolves on a time scale that is much longer than τin. Thus

〈
gini (t)

〉
= Gin

∫ t

−∞
dt′e−(t−t

′)/τin

〈all inputs∑
tin

δ (t′ − tin)

〉
(8.17)

= Gin r
in
i (t)

∫ t

−∞
dt′e−(t−t

′)/τin

= Gin r
in
i (t) τin
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where the product rini (t)τin is just the number of post-synaptic inputs (or pre-
synaptic spikes from all neighbors, since we do not include synaptic depression and
other time-dependent synaptic effects) that occur in the period of one time-constant
of the post-synaptic cell.

We now have

Iexti (t)→ Gin τin r
in
i (t) [Ein − Vi(t)] . (8.18)

8.2.2 Averaging over synaptic inputs

We next turn to the current that results from synaptic inputs, i.e.,

Ineti (t) ≡
n∑
j=1

gij(t) [Ej − Vi(t)] (8.19)

where gij(t) is the post-synaptic conductance triggered by pre-synaptic spike

τij
dgij(t)

dt
+ gij(t) = τij Gij

∑
tj

δ (t− tj) (8.20)

where the summation is over the spikes in pre-synaptic neuron “j”. We replaced
the spatial summation in synaptic input by the ensemble average, as in the case of
the external input. This holds for Poisson firing rates among the neurons in the
network. Thus

gij(t) = Gij

∫ t

−∞
dt′e−(t−t

′)/τij
∑
tj

δ (t′ − tj) (8.21)

so that the average over a large number of inputs (either separate presynaptic inputs
or many post-synaptic potential from one input by a very slow synapse) is

〈gij(t)〉 = Gij

∫ t

−∞
dt′e−(t−t

′)/τij

〈∑
tj

δ (t− tj)
〉

(8.22)

= Gij rj(t)
∫ t

−∞
dt′e−(t−t

′)/τij

= Gij rj(t) τij

where rj(t) is the slowly varying rate of spiking of neuron ”j” and τijrj(t) corresponds
to the mean number of spikes in a time period of τij. The network contribution to
the current to the cell become

Ineti (t)→
N∑
j=1

Gij τij rj(t) [Ej − Vi(t)] . (8.23)
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8.2.3 Recapitulation of network equations

The sum of the external and network currents is thus

Iexti (t) + Ineti (t) = Gin τ in rini (t) [Ein − Vi(t)] +
N∑
j=1

Gij τij rj(t) [Ej − Vi(t)]

(8.24)

where N is the number of neurons in the network. This expression has constant
terms and voltage dependent terms. Let’s expand this expression and put all the
voltage terms with respect to EL, so that the input gains a term that appears in
form similar to that of gL.

Iexti (t) + Ineti (t) = Ginτinr
in
i (t) (Ein − EL) +

N∑
j=1

Gij τij rj(t) (Ej − EL)(8.25)

+

Gin τin r
in
i (t) +

N∑
j=1

Gij τij rj(t)

 [EL − Vi(t)] .

The first term to the right of the equality is a constant, i.e., independent of V (t).
We consider this as an effective applied current

Iappi (t) ≡ Ginτinr
in
i (t) (Ein − EL) +

N∑
j=1

Gij τij rj(t) (Ej − EL). (8.26)

The important thing is that the external and network terms have a voltage depen-
dence that is proportional to the difference between the synaptic reversal potential
and the leakage reversal potential, i.e., the resting potential.

The second term appears as a leakage current, in which the synaptic input adds to
this leakage. We define an effective synaptic conductance, gsyni (t) that adds to the
leakage conductance gL, i.e.,

gsyni (t) ≡ Gin τin r
in
i (t) +

N∑
j=1

Gij τij rj(t). (8.27)

The results of our efforts is that we can write Kirchhoff’s law for one neuron, rather
than the network, with effective parameters, In particular, gL+gsyni (t) is the effective
leak current and

C
dVi(t)

dt
= [gL + gsyni (t)] [EL − Vi(t)]− Iacti (V, t) + Iappi (t). (8.28)

The modified firing rate is now
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ri(t) = f{Iappi (t)− Ioc − vc gL − vc g
syn
i (t)} (8.29)

= f{Ginτinr
in
i (t)(Ein − EL) +

N∑
j=1

Gijτijrj(t)(Ej − EL)− Ioc − gLvc

−Ginτinr
in
i (t)vc −

N∑
j=1

Gijτij rj(t)vc}

= f{
N∑
j=1

Gij τij(Ej − EL − vc) rj(t) + Ginτ in(Ein − EL − vc)rini (t)− (Ioc + gLvc)}

We can now identify terms in the conductance equations that correspond to
terms in our network equations. In particular,

Synapses
Wij ≡ Gijτij(Ej − EL − vc) (8.30)

is the synaptic efficiency, or connection strength, between neurons in the net-
work.

External Drive
W in ≡ Ginτin(Ein − EL − vc) (8.31)

is the synaptic efficiency, or strength, for an external input to the neuron.

Threshold
θ ≡ Ioc + gLvc (8.32)

is the threshold denoted θ. Thus the equation(s) for the firing rate become

Rate Equation

ri(t) = f{
N∑
j=1

Wijrj(t) +W inrini (t)− θ} (8.33)

We now have derived the rate equations, under the assumption that the threshold
of the f − I curve is shifted by the changes in synaptic conductance and that the
cell receives multiple inputs (PSPs) during each integration period (nominally τij).

It is not surprising that the synaptic efficiency depend on the conductances, i.e.,
Wij ∝ Gij. It is surprising that the synaptic efficiency depends on the combination
Ej − EL − vc; the synaptic reversal potential must be taken relative to EL + vc.
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8.3 Main result

A final point is that we need a differential equation for the rates ri, or for the discrete
case a difference equation, so that the rates evolve over time. This is equivalent to
letting the input to the neuron evolve with the time-constant of the neuron. Thus
for the continuous case, using our previous notation µi(t) as the input to the cell,
we have

τi
dui(t)

dt
+ ui(t) =

N∑
j=1

Wijrj(t) +W inri(t)
in − θ (8.34)

and

ri(t) = f{µi(t)} (8.35)

While for the discrete case, we have simply

rii(t+ 1)← f{
N∑
j=1

Wijrj(t) +W inrini (t)− θ} (8.36)

where, in terms of the previous symmetric and normalized notation, we have Si(t)
= (2ri(t) − rmax)/2rmax, which ranges between -1 and +1. For the special case of
binary neurons, i.e., Si = ±1, which corresponds to β →∞ with a saturating firing
rate, fmax, we have

Si(t+ 1)← sgn

 N∑
j=1

WijSj(t) +W inSini (t)− θ

 . (8.37)
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